

School of Interdisciplinary Engineering and Sciences (SINES) National University of Sciences & Technology (NUST)

Title: Computational Enzymology

<u>Objectives:</u> The objectives of enzymology revolve around gaining a comprehensive understanding of enzymes, their properties, mechanisms, regulation, and applications. This knowledge contributes to various fields, including biochemistry, molecular biology, biotechnology, medicine, and drug discovery.

Outcomes: On completion, students will be able to apply theoretical knowledge to:

- 1. explain biochemical reaction in sense of thermodynamics, kinetics and molecular interactions
- 2. use catalytic strategies in interpreting mechanisms of enzymatic action
- apply appropriate methods for determination of catalytic parameters and activity of enzymes and resolve problems considering kinetics and thermodynamics of enzymatic reactions

Course Code: CSE-914

Credit Hours: 3-0 Course Contents:

- 1. Enzymology-Historical Aspect
- 2. Computational Methods in Enzymology
- 3. Structural Components of Enzymes and their Functions
- 4. Enzyme kinetics
- 5. Enzymes in Humans
- 6. Chemical Reaction Investigations in Enzyme Catalysis
- 7. Challenges in Enzyme Modeling

Course Contents with proposed contact Hours (Weekly plan):

Lecture wise Breakdown

W#1	Topics	Lect #
1	Enzymology-Historical Aspect	1-2
2	Computational Methods in Enzymology	
	(a) Hybrid Potentials for Large Bio-molecular Systems	
	(b) Conformational Search on High-Dimensional Energy	3-4
	Surface	
	(c) Conjugate Peak Refinement Method	
3	(d) Boundary Interactions at the QM/MM Interface	5-6
	(e) Combined Quantum Mechanical/Classical Molecular	
	Dynamics Simulations	
4	Structural Components of Enzymes and their Functions	
	(a) Overview of Protein Chemistry	7-8
	(b) Enzyme Commission Nomenclature	
5	(c) Enzymatic and Non-Enzymatic Catalysis	9-10

	(d) Catalytic Approaches Adopted by Enzymes	
	Enzyme kinetics	
6	(a) Steady state kinetics	11-12
7	(b) Isotope effects	
	(c) Transient Phase kinetics	
	(d) pH-Rate profiles	13-14
	(e) Allosteric Regulations	
8	Revision	15-16
9	Mid Semester Exam	17-18
	Enzymes in Humans	
10-	Different kinds of enzymes in humans and their function (examples and	19-24
12	explanation of six main categories of enzymes;	
12	oxidoreductases, transferases, hydrolases, lyases, isomerases, and	
	ligases	
	Chemical Reaction Investigations in Enzyme Catalysis	
13	Reaction Mechanisms revealed by QM/MM investigations	25-26
'	(a) Biomolecular Motors	
	(b) RAS-GAP Signaling protein	
	(c) EcoRV enzyme	
14	(d) Lactate and Maltate Dehydrogenases	27-28
	(e) Acetylcholinestrase	
	(e) Carbonic Anhydrase	
15	(f) Ni-Fe Hydrogeanse	29-30
	(g) HIV Protease	
16	Challenges in Enzyme Modeling	31-32
17	Presentations + Revision + Problem Solving	33-34
	Assignment-1: Paper Submission	
18	End Term ☉	35-36

Details of lab work/workshop practice, if applicable:

Lab sessions will mainly focus on the hands-on training in connection with the lectures taught in class. Details are mention in the week wise breakdown.

Recommended reading, including textbooks, reference books with dates

- **6.** Robert A. Copeland, "Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis", Wiley; 3rd edition, **2023**
- 7. N.S. Punekar, "ENZYMES: Catalysis, Kinetics and Mechanisms", Springer; 1st ed. **2018**
- 8. Lodola, A., Mulholland, A.J., "Computational Enzymology. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology", vol 924. Humana Press, Totowa. **2013**
- 9. T. Devasena, "Enzymology", Oxford University Press; 1st edition, 2012
- 10. Frey PA, Hegeman AD: Enzyme Reaction Mechanisms, Oxford University Press, **2007**.

- 11. Buchholz K, Bornscheuer UT: *Biocatalysts and Enzyme Technology*, Wiley-Blackwell, **2012.**
- 12. "Encyclopedia of Computational Chemistry", 5th volume, John Wiley and Sons, Inc.1998.
- 13. Relevant publications

Nature of Assessments

Homework/ Assignments: 5%
Quizzes: 5%
MSE: 30%
Final Exam: 40%
Project: 20%